Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Opportunities for Electrified Internal Combustion Engines

2020-04-14
2020-01-0281
The automotive industry is polarized between external pressures for ‘zero’ emission battery electric vehicles (BEV) and the ability to manufacture them economically and with minimal environmental impact. Most predictions of future BEV market share suggest that the internal combustion engine (ICE) has an important role to play in personal transportation for the next several decades. That engine will very likely be part of a hybrid architecture. Accepting that the engine will be part of a hybrid powertrain permits new design rules and strategies for the ICE. A major change of the engine could be to reduce BMEP, power density and/or engine speed requirements as performance demand will be supplemented by electric machines. This study focuses on simple changes to the ICE to increase thermal efficiency assuming supplemental electric energy.
Technical Paper

Improving Brake Thermal Efficiency Using High-Efficiency Turbo and EGR Pump While Meeting 2027 Emissions

2021-09-21
2021-01-1154
Commercial vehicles are moving in the direction of improving brake thermal efficiency while also meeting future diesel emission requirements. This study is focused on improving efficiency by replacing the variable geometry turbine (VGT) turbocharger with a high-efficiency fixed geometry turbocharger. Engine-out (EO) NOX emissions are maintained by providing the required amount of exhaust gas recirculation (EGR) using a 48 V motor driven EGR pump downstream of the EGR cooler. This engine is also equipped with cylinder deactivation (CDA) hardware such that the engine can be optimized at low load operation using the combination of the high-efficiency turbocharger, EGR pump and CDA. The exhaust aftertreatment system has been shown to meet 2027 emissions using the baseline engine hardware as it includes a close coupled light-off SCR followed by a downstream SCR system.
Technical Paper

In-Situ Measurement of Component Efficiency in Connected and Automated Hybrid-Electric Vehicles

2020-04-14
2020-01-1284
Connected and automated driving technology is known to improve real-world vehicle efficiency by considering information about the vehicle’s environment such as traffic conditions, traffic lights or road grade. This study shows how the powertrain of a hybrid-electric vehicle realizes those efficiency benefits by developing methods to directly measure real-time transient power losses of the vehicle’s powertrain components through chassis-dynamometer testing. This study is a follow-on to SAE Technical Paper 2019-01-0116, Test Methodology to Quantify and Analyze Energy Consumption of Connected and Automated Vehicles [1], to understand the sources of efficiency gains resulting from connected and automated vehicle driving. A 2017 Toyota Prius Prime was instrumented to collect power measurements throughout its powertrain and driven over a specific driving schedule on a chassis dynamometer.
Technical Paper

Refining Vibration Quality - A Study Characterizing Vehicle/Operator Interface Vibration on Snowmobiles and ATVs

2007-05-15
2007-01-2389
Sensory jury testing was utilized to characterize vibration levels perceived by the operator, with respect to levels measured using instrumentation, in order to develop a tool for the evaluation of vibration at the operator interfaces. Details of the jury testing and jury data processing method are highlighted as well as the refinement of vibration characterization for a specific application. The vibration at user interface locations of both snowmobiles and ATVs was measured along with subjective feedback from a panel of jurists. Statistical analysis was performed on the jury data to provide both a qualitative and quantitative number to represent the opinion of the jury. Correlations were developed between the measured levels of vibration and the opinions of the jury. Finally, a set of correlation functions suitable for design predictions was developed.
Technical Paper

Evaluation of Six Natural Gas Combustion Systems for LNG Locomotive Applications

1997-10-01
972967
An experimental program to develop a practical natural gas-fueled locomotive engine was conducted. Six natural gas-fueled combustion systems for an EMD 710-type locomotive engine were developed and tested. The six systems were evaluated in terms of NOx and CO emissions, thermal efficiency, knock tolerance, and other practical considerations. Each combustion system was tested at Notch 5, 100-percent load, Notch 8, 80-percent load, and Notch 8, 100-percent load conditions. In general, all of the technologies produced significantly lower NOx emissions than the baseline diesel engine. Based on the results of the tests and other analyses, a late cycle, high-injection pressure (LaCHIP) combustion system, using a diesel pilot-ignited, late cycle injection of natural gas with a Diesel-type combustion process, was determined to provide the most practical combustion system for a natural gas-fueled, EMD 710-powered locomotive.
Technical Paper

Enhancement of Engineering Education through University Competition-Based Events

2006-11-13
2006-32-0049
Engineering education at the University level is enhanced by competition-based projects. The SAE Clean Snowmobile Challenge is a prime example of how competition-based engineering education benefits the small engines industry and improves the engineering talent pool of the nation in general. For the past several decades, SAE has encouraged young engineers to compete in designing off road vehicles (Baja SAE ®), small race cars (Formula SAE ®), remote control airplanes (Aero Design ®), high mileage vehicles (Supermileage ®) and robots (Walking Robot ®). Now a new competition, the SAE Clean Snowmobile Challenge ™ (CSC), based on designing a cleaner and quieter snowmobile has led to a new path for young engineers to explore the challenges of designing engines that emit less pollution and noise. The paper will summarize the results of the most recent Clean Snowmobile Challenge 2006 and document the successes of the past seven years of the Challenge.
Technical Paper

Development and Testing of Optimized Engine Oils for Modern Two-Stroke Cycle Direct Fuel Injected Outboard Engines

2006-11-13
2006-32-0018
Despite the recent increase in fuel prices, the multi-billion dollar recreational boating market in North America continues to experience solid momentum and growth. In the U.S. economy alone, sales of recreational boats continue to increase with over 17 million boats sold in 2004 [1]. Of that share, outboard boats and the engines that power them, accounted for nearly half of all boat sales. Though there has been a shift in outboard technology to four-stroke cycle engines, a significant number of new engine sales represent two-stroke cycle engines employing direct fuel injection as a means to meet emissions regulations. With the life span of modern outboards estimated to be 8 to 10 years, a significant base of two-stroke cycle engines exist in the market place, and will continue to do so for the foreseeable future.
Technical Paper

Development and Validation of a Snowmobile Engine Emission Test Procedure

1998-09-14
982017
An appropriate test procedure, based on a duty cycle representative of real in-use operation, is an essential tool for characterizing engine emissions. A study has been performed to develop and validate a snowmobile engine test procedure for measurement of exhaust emissions. Real-time operating data collected from four instrumented snowmobiles were combined into a composite database for analysis and formulation of a snowmobile engine duty cycle. One snowmobile from each of four manufacturers (Arctic Cat, Polaris, Ski-Doo, and Yamaha) was included in the data collection process. Snowmobiles were driven over various on- and off-trail segments representing five driving styles: aggressive (trail), moderate (trail), double (trail with operator and one passenger), freestyle (off trail), and lake driving. Statistical analysis of this database was performed, and a five-mode steady-state snowmobile engine duty cycle was developed.
Technical Paper

Effects of Water on Distillate Fuel Lubricity

1998-10-19
982568
The continuing trend toward “cleaner” distillate fuels has prompted concerns about the lubricity characteristics of current and future distillates. Since many U.S. Navy ships utilize seawater-compensated fuel tanks to maintain the ship's trim, the Navy performed a detailed study in order to better understand the relationship between fuel water content and lubricity characteristics. The lubricity test methods, modified for this study, were ASTM D 6078 (SLBOCLE), D 6079 (HFRR), and D 5001 (BOCLE). The results indicated that, with few exceptions, there was generally no evidence of a correlation between the water content of the fuels and the corresponding lubricity measurements as determined by the laboratory tests.
Technical Paper

Lower Explosion Limits and Compositions of Middle Distillate Fuel Vapors

1998-10-19
982485
Lower explosion limits (LEL) and the chemical compositions of JP-8, Jet A and JP-5 fuel vapors were determined in a sealed combustion vessel equipped with a spark igniter, a gas-sampling probe, and sensors to measure pressure rise and fuel temperature. Ignition was detected by pressure rise in the vessel. Pressure rises up to 60 psig were observed near the flash points of the test fuels. The fuel vapors in the vessel ignited from as much as 11°F below flash-point measurements. Detailed hydrocarbon speciation of the fuel vapors was performed using high-resolution gas chromatography. Over 300 hydrocarbons were detected in the vapors phase. The average molecular weight, hydrogen to carbon ratio, and LEL of the fuel vapors were determined from the concentration measurements. The jet fuel vapors had molecular weights ranging from 114 to 132, hydrogen to carbon ratios of approximately 1.93, and LELs comparable to pure hydrocarbons of similar molecular weight.
Technical Paper

Determination of Source Contribution in Snowmobile Pass-by Noise Testing

2009-05-19
2009-01-2228
As noise concerns for snowmobiles become of greater interest for governing bodies, standards such as SAE J192 are implemented for regulation. Specific to this pass-by noise standard, and unlike many other pass-by tests, multiple non-standardized test surfaces are allowed to be used. Manufacturers must understand how the machines behave during these tests to know how to best improve the measured noise levels. Data is presented that identifies the contributions of different sources for different snowmobiles on various test surface conditions. Adaptive resampling for Doppler removal, frequency response functions and order tracking methods are implemented in order to best understand what components affect the overall measurement during the pass-by noise test.
Technical Paper

Sound Quality Jury Analysis versus Sound Pressure Measurement in Snowmobiles

2009-05-19
2009-01-2231
Restrictions on noise and gaseous emissions of snowmobiles have been a topic of much attention for the past decade. Concerns with snowmobiles in our national parks and with private land owners have resulted in new park legislations as well as legal disputes regarding recreational vehicle rights-of-way. The most widely used standard for snowmobile testing is SAE J192 Exterior Sound Level for Snowmobiles, SAE Recommended Practice. This is a wide-open throttle test with sound level meters 50 feet on either side of the snowmobile. The sound pressure cannot exceed a certain level for the snowmobile to pass. Perceived noise also plays an important role in the objections to snowmobiles. This paper considers the role of Sound Quality methods, specifically Jury Analysis, in understanding the difference between objective noise analysis and subjective noise preferences; also considering the underlying snowmobile attributes that control snowmobile noise.
Technical Paper

Modeling Interior Noise in Off-Highway Trucks using Statistical Energy Analysis

2009-05-19
2009-01-2239
The objective of this project was to model and study the interior noise in an Off-Highway Truck cab using Statistical Energy Analysis (SEA). The analysis was performed using two different modeling techniques. In the first method, the structural members of the cab were modeled along with the panels and the interior cavity. In the second method, the structural members were not modeled and only the acoustic cavity and panels were modeled. Comparison was done between the model with structural members and without structural members to evaluate the necessity of modeling the structure. Correlation between model prediction of interior sound pressure and test data was performed for eight different load conditions. Power contribution analysis was performed to find dominant paths and 1/3rd octave band frequencies.
Technical Paper

Mild Regenerative Braking to Enhance Fuel Economy via Lowered Engine Load Due to Alternator

2008-10-12
2008-01-2560
Brake energy recovery is one of the key components in today's hybrid vehicles that allows for increased fuel economy. Typically, major engineering changes are required in the drivetrain to achieve these gains. The objective of this paper is to present a concept of capturing brake energy in a mild hybrid approach without any major modifications to the drivetrain or other vehicular systems. With fuel costs rising, the additional component cost incurred in the presented concept may be recovered quickly. In today's vehicles, alternators supply the electrical power for the engine and vehicle accessories whenever the engine is running. As vehicle electrical demands increase, this load is an ever-increasing part of the engine's output, negatively impacting fuel economy. By using a regenerative device (alternator) on the drive shaft (or any other part of the power train), electrical energy can be captured during braking.
Technical Paper

Control System Development for Retrofit Automated Manual Transmissions

2009-12-13
2009-28-0001
For transmission suppliers tooled primarily for producing manual transmissions, retrofitting a manual transmission with actuators and a controller is business viable. It offers a low cost convenience for the consumer without losing fuel economy when compared to torque converter type automatics. For heavy duty truck fleets even the estimated 3% gain in fuel economy that the Automated Manual Transmission (AMT) offers over the manual transmission can result in lower operational costs. This paper provides a case study using a light duty transmission retrofitted with electric actuation for gears and the clutch. A high level description of the control algorithms and hardware is included. Clutch control is the most significant component of the AMT controller and it is addressed in detail during operations such as vehicle launch from rest, launch from coast and launch on grades.
Technical Paper

Design and Control Considerations for a Series Heavy Duty Hybrid Hydraulic Vehicle

2009-11-02
2009-01-2717
Hybrid hydraulic power trains are a natural fit for heavy duty vehicle applications due to their high power density. This paper describes the analytical formulae available for sizing a series hybrid hydraulic vehicle without changing the engine size. Sizing of pump, accumulator and motor are addressed specifically. A control strategy is also suggested for operating the engine and powertrain pressure close to the best efficiency zones. An example is then given using an FMTV (Family of Medium Tactical Vehicles) platform with a CAT C7 engine. Simulation results are generated using VPSET (Vehicle Propulsion Systems Evaluation Tool), an SwRI-developed vehicle modeling and simulation tool. The hydraulic components are sized according to the recommendations in this paper. The suggested control strategy is implemented in VPSET and performance of the series hydraulic hybrid configuration is compared with that of a conventional powertrain.
Technical Paper

Development of an In-Service Snowmobile Emission Test Procedure For the SAE Clean Snowmobile Challenge

2009-11-02
2009-01-2625
As concerns over air pollution continue to increase, all vehicles are subject to greater scrutiny for their emissions levels. Snowmobiles and other off-road recreational vehicles are now required to meet emissions regulations enacted by the United States Environmental Protection Agency (EPA). Currently these vehicles are certified using a stationary test procedure with the engine operating attached to a dynamometer and following a five-mode test cycle. The five modes range from idle to wide open throttle and are chosen to represent the typical operation regime of a vehicle. In addition, the EPA five-mode stationary emissions test has been traditionally used for scoring competition snowmobiles at the SAE Clean Snowmobile Challenge (CSC). For the 2009 CSC, in-service emission testing was added to the competition to score the teams on actual, in-use emissions during operation of their competition snowmobile operated on a controlled test course.
Technical Paper

A Feasible CFD Methodology for Gasoline Intake Flow Optimization in a HEV Application - Part 2: Prediction and Optimization

2010-10-25
2010-01-2238
Today's engine and combustion process development is closely related to the intake port layout. Combustion, performance and emissions are coupled to the intensity of turbulence, the quality of mixture formation and the distribution of residual gas, all of which depend on the in-cylinder charge motion, which is mainly determined by the intake port and cylinder head design. Additionally, an increasing level of volumetric efficiency is demanded for a high power output. Most optimization efforts on typical homogeneous charge spark ignition (HCSI) engines have been at low loads because that is all that is required for a vehicle to make it through the FTP cycle. However, due to pumping losses, this is where such engines are least efficient, so it would be good to find strategies to allow the engine to operate at higher loads.
Technical Paper

Fuel Efficiency Effects of Lubricants in Military Vehicles

2010-10-25
2010-01-2180
The US Army is currently seeking to reduce fuel consumption by utilizing fuel efficient lubricants in its ground vehicle fleet. An additional desire is for a lubricant which would consist of an all-season (arctic to desert), fuel efficient, multifunctional Single Common Powertrain Lubricant (SCPL) with extended drain capabilities. To quantify the fuel efficiency impact of a SCPL type fluid in the engine and transmission, current MIL-PRF-46167D arctic engine oil was used in place of MIL-PRF-2104G 15W-40 oil and SAE J1321 Fuel Consumption In-Service testing was conducted. Additionally, synthetic SAE 75W-140 gear oil was evaluated in the axles of the vehicles in place of an SAE J2360 80W-90 oil. The test vehicles used for the study were three M1083A1 5-Ton Cargo vehicles from the Family of Medium Tactical Vehicles (FMTV).
Technical Paper

Model Based Design Accelerates the Development of Mechanical Locomotive Controls

2010-10-05
2010-01-1999
Smaller locomotives often use mechanical transmissions instead of diesel-electric drive systems typically used in larger locomotives. This paper discusses how Model Based Design was used to develop the complete drive train control system for a 24 ton sugar cane locomotive. A complete MATLAB Simulink machine model was built to fully test and verify the shift control logic, traction control, vehicle speed limiting, and braking control for this locomotive application before it was commissioned. The model included the engine, torque converter, planetary transmission, drive line, and steel on steel driving surface. Simulation was used to debug all control code and test and refine control strategies so that the initial field commissioning in remote Australia was executed very quickly with minimal engineering support required.
X